-
الأخ عبدالله الصقري والأعضاء المهتمين بالموضوع،[align=right]
أعتقد أنك تقصد التحويل إلى مسقط مركيتور المستعرض (UTM) الذي يقوم على الحساب المتري؟
إذا كان الأمر كذلك فأرفق لكم المعادلات :[/align]
[align=left]Converting Latitude and Longitude to UTM
These formulas are slightly modified from Army (1973). They are accurate to within less than a meter within a given grid zone.
Symbols
• lat = latitude of point
• long = longitude of point
• long0 = central meridian of zone
• k0 = scale along long0 = 0.9996
• e = SQRT(1-b2/a2) = .08 approximately. This is the eccentricity of the earth's elliptical cross-section.
• e'2 = (ea/b)2 = e2/(1-e2) = .007 approximately. The quantity e' only occurs in even powers so it need only be calculated as e'2.
• n = (a-b)/(a+b)
• rho = a(1-e2)/(1-e2sin2(lat))3/2. This is the radius of curvature of the earth in the meridian plane.
• nu = a/(1-e2sin2(lat))1/2. This is the radius of curvature of the earth perpendicular to the meridian plane. It is also the distance from the point in question to the polar axis, measured perpendicular to the earth's surface.
• p = (long-long0)
• sin1" = sine of one second of arc = pi/(180*60*60) = 4.8481368 x 10-6.
Calculate the Meridional ArcS is the meridional arc through the point in question (the distance along the earth's surface from the equator). All angles are in radians.
• S = A'lat - B'sin(2lat) + C'sin(4lat) - D'sin(6lat) + E'sin(8lat), where lat is in radians and
• A' = a[1 - n + (5/4)(n2 - n3) + (81/64)(n4 - n5) ...]
• B' = (3an/2)[1 - n + (7/8)(n2 - n3) + (55/64)(n4 - n5) ...]
• C' = (15an2/16)[1 - n + (3/4)(n2 - n3) ...]
• D' = (35an3/48)[1 - n + (11/16)(n2 - n3) ...]
• E' = (315an4/51)[1 - n ...]
The USGS gives this form, which may be more appealing to some. (They use M where the Army uses S)
• M = a[(1 - e2/4 - 3e4/64 - 5e6/256 ....)lat
- (3e2/8 + 3e4/32 + 45e6/1024...)sin(2lat)
+ (15e4/256 + 45e6/1024 + ....)sin(4lat)
- (35e6/3072 + ....) sin(6lat) + ....)] where lat is in radians
Converting Latitude and Longitude to UTM
All angles are in radians.
y = northing = K1 + K2p2 + K3p4, where
• K1 = Sk0,
• K2 = k0sin21" nu sin(lat)cos(lat)/2
• K3 = [k0sin41" nu sin(lat)cos3(lat)/24][(5 - tan2(lat) + 9e'2cos2(lat) + 4e'4cos4(lat)]
x = easting = K4p + K5p3, where
• K4 = k0sin1" nu cos(lat)
• K5 = (k0sin31" nu cos3(lat)/6)[1 - tan2(lat) + e'2cos2(lat)]
Easting x is relative to the central meridian. For conventional UTM easting add 500,000 meters to x.
Converting UTM to Latitude and Longitude
y = northing, x = easting (relative to central meridian; subtract 500,000 from conventional UTM coordinate).
Calculate the Meridional Arc
This is easy: M = y/k0.
Calculate Footprint Latitude
• mu = M/[a(1 - e2/4 - 3e4/64 - 5e6/256...)
• e1 = [1 - (1 - e2)1/2]/[1 + (1 - e2)1/2]
footprint latitude fp = mu + J1sin(2mu) + J2sin(4mu) + J3sin(6mu) + J4sin(8mu), where:
• J1 = (3e1/2 - 27e13/32 ..)
• J2 = (21e12/16 - 55e14/32 ..)
• J3 = (151e13/96 ..)
• J4 = (1097e14/512 ..)
Calculate Latitude and Longitude
• e'2 = (ea/b)2 = e2/(1-e2)
• C1 = e'2cos2(fp)
• T1 = tan2(fp)
• R1 = a(1-e2)/(1-e2sin2(fp))3/2. This is the same as rho in the forward conversion formulas above, but calculated for fp instead of lat.
• N1 = a/(1-e2sin2(lat))1/2. This is the same as nu in the forward conversion formulas above, but calculated for fp instead of lat.
• D = x/(N1k0)
lat = fp - Q1(Q2 - Q3 + Q4), where:
• Q1 = N1 tan(fp)/R1
• Q2 = (D2/2)
• Q3 = (5 + 3T1 + 10C1 - 4C12 -9e'2)D4/24
• Q4 = (61 + 90T1 + 298C1 +45T12 - 3C12 -252e'2)D6/720
long = long0 + (Q5 - Q6 + Q7)/cos(fp), where:
• Q5 = D
• Q6 = (1 + 2T1 + C1)D3/6
• Q7 = (5 - 2C1 + 28T1 - 3C12 + 8e'2 + 24T12)D5/120
عنوان ملف إكسل لتطبيق هذه المعادلات
http://www.uwgb.edu/dutchs/UsefulDat...nversions1.xls
Spreadsheet For UTM Conversion[/align]المرجع:
Steven Dutch, Natural and Applied Sciences, University of Wisconsin - Green Bay
ضوابط المشاركة
- لا تستطيع إضافة مواضيع جديدة
- لا تستطيع الرد على المواضيع
- لا تستطيع إرفاق ملفات
- لا تستطيع تعديل مشاركاتك
-
قوانين المنتدى